Back 2 Basics with Goo

Jonathan Bachrach
MIT Al Lab

GGoo

Goals
Examples
Relation
Definition
State
Future

Goo Hdlo World

(puts out “hello world”)

Simple
Productive
Powerful
Extensible
Dynamic
Efficient
Real-time

Goo Goals

* Teaching and research
vehicle

e Electronic musicis
domain to keep it
honest

Simplicity

e 10K lines 10 page manual
e Hard limit — pressure makes pearls

Best of All Worlds

Want scripting and delivery language rolled
Into one

Toolswork better
No artificial boundaries and cliffs
Never been done effectively

Electronic music forces realism

Goo Ancestors

e Language Design is Difficult

— Leverage proven ideas

— Make progress in selective directions
e Ancestors

— Scheme

— Cecll

— Dylan

G00 <=> Scheme

e Concise naming Long-winded naming
e Procedural macros * Rewriteruleonly
e Objectsall the way e Only records

Goo <=> Cecl|

o Prefix syntax o Infix syntax

e Scheme inspired e Smalltalk inspired
special forms special forms

Goo <=> Dylan

Prefix syntax
Procedural macros

Rationalized collection
protocol / hierarchy

Always open
Predicate types

Infix syntax
Rewrite-rule only ...

Conflated collection
protocol / hierarchy

Sealing
Fixed set of types

Object Orientation

e Assume you know OO basics

e Motivations:
— Abstraction
— Reuse
— Extensibility

Goo: OO0 & MM

(dc <poi nt> (<any>))
(dp point-x (<point> => <int>) 0)
(dp point-y (<point> => <int>) 0)

(dv pl (new <point>))

(dm + (pl| <poi nt> p2| <poi nt> => <poi nt >)
(new <poi nt >
point-x (+ (point-x pl) (point-x p2))
point-y (+ (point-y pl) (point-y p2)))

L anguage Design:
User Goals-- The“ilities’

Learnability
Understandability
Writability
Modifiability
Runnability
Interoperability

L earnability

Simple
Sma
Regular

Gentle learning curve

Perlis. “Symmetry is a complexity reducing
concept...; seek it everywhere.”

Goo: Learnability

o Simple and Small:

— 18 specia forms. i f, seq, set, fun, def, let, Ioc,
esc, fin, dv, dm dg, new, dc, dp, ds, ct, quote

— /Mmacros. try, rep, mf, and, or, cond, case

e Gentle Learning Curve:

— Graceful transition from functional to object-oriented
programming

— Perlis “Purely applicative languages are poorly
applicable.”

Goo: Special Forms

| F (IF ,test ,then ,else)

SEQ (SEQ, @orns)

SET (SET ,nane ,form | (SET (,nanme ,@rgs) ,form
DEF (DEF ,var ,init)

FUN (FUN ,sig , @ody)

LOC (LOC ((,nane ,sig , @ody) .) . @ody)
ESC (ESC , nane , @ody)

FIN (FIN,6 protected-form, @l eanup-forns)
DV (DV ,var ,form

DM (DM, nane ,sig , @ody)

DG (DG , nane , siQ)

DC (DC , nane (, @arents))

DP (DP ,getter (,class => ,type) [,init])
NEW (NEW (, @arents) , @rop-inits)

sig (,@ars) | (,@ars => ,var)
var , hame | (, nanme ,type)
prop-init , nanme ,val ue

Understandability

Natural notation

Simple to predict behavior
Modular

Models application domain
Concise

Goo: Understandability

e Describable by asmall interpreter
— Size of Interpreter is a measure of complexity
of language
e Regular syntax
— Debatable whether prefix is natural, but it's
simple, regular and easy to implement

Writability

Expressive features and abstraction
mechanisms

Concise notation
Domain-specific features and support
No error-prone features

Internal correctness checks (e.g.,
typechecking) to avoid errors

Goo: Error Proneness

* No out of language errors

— At worst all errors will be be caught In
language at runtime

— At best potential errors such as “no applicable
methods’ will be caught statically earlier and in
batch

» Unbiased dispatching and inheritance

— Example: Method selection not based on
lexicographical order asin CLOS

Design Principle Two:
Planned Serendipity

o Serendipity:
— M-W: the faculty or phenomenon of finding
valuable or agreeable things not sought for

e Orthogonality

— Collection of few independent powerful
features combinable without restriction

e Consistency

Goo: Serendipity

Objects al the way down

Slots accessed only through callsto
generic’'s

Simple orthogonal special forms
Expression oriented

Example;

— Exception handling can be built out of afew
special forms; esc, fin, loc, ..

Modifiability

Minimal redundancy

Hooks for extensibility included
automatically

Users equal partner in language design
No features that make it hard to change
code later

Goo: Extensible Syntax

Syntactic Abstraction
Procedural macros

WSYWIG

— Pattern matching
— Code generation

Example;
(ds (unless ,test , @ody)
“(if (not ,test) (seq , @ody)))

Goo: Multimethods

« Can add methods outside original class
definition:
— (dmj b-print (x|<node>) .)
— (dmjb-print (x|<str>) .)

Goo: Generic Accessors

 All slot access goes through generic
function calls

e Can easlly redefine these generic’ s without
affecting client code

Runnability

 Features for programmers to control
efficiency

« Analyzable by compilers and other tools

Goo: Optional Types

All bindings and parameters can take
optional types

Rapid prototype without types

Add types for documentation and efficiency

Example:
(dmformat (s nsg args|..) ..)
(dm format (s|<streant neg|<str> args|..) ..)

Goo: Pay as You Go

« Don’t charge for features not used

 Pay more for features used in more complicated
wayS
o Examples:
— Dispatch
 Just function call if method unambiguous from argument types
» Otherwise require dynamic method lookup

— Go0’ shind-exit called “esc”
e Local exitsare set + goto

 Non local exits must create aframe and stack alloc an exit
closure

The Rub

 Support for evolutionary programming
creates a serious challenge for implementers

o Straightforward implementations would
exact atremendous performance penalty

|mplementation Strategy

e Simple dynamic compilation
e Maintains both

— optimization and

— Interactivity

Initial Loose Compilation

* Veary quick compilation
o Generate minimal dependencies
— only names and macros

Dynamic Whole Program
Compilation
e Assume complete information

* Parform aggressive type flow analysis
— Chooses, clones and inlines methods

e Compilation can be triggered manually,
through dependencies, or through feedback

Dependency Tracking

e Assumptions are tracked
» Changed assumptions trigger recompilation

e Based on Fun-O-Dylan approach
— Dependencies logged on bindings
— Record dependent and compilation stage

Simple Code Generator

e Focusison high-level optimizations

 Potentially gen-code direct from AST with
approximated peep-hole optimizations

Save Image

» Save executable copy of image to disk
— Maintains optimizations and dependencies
— Uses dump/undump approach of emacs

e Avoid hassles of
— Fle formats
— Databases
— €lc

Status

Fully bootstrapped

Module system

Dynamic C-based code-gen
Dependency tracking
—low-typist by summer’ s end

Research Directions

L anguage Design

Dynamic
Darameterized types
Dynamic Interfaces
Series

Macros

|_anguage
mplementation
Dynamic compilation
Analysis/optimizations
Visualization
Real-time

