
Back 2 Basics with Goo

Jonathan Bachrach
MIT AI Lab

Goo

• Goals
• Examples
• Relation
• Definition
• State
• Future

Goo Hello World

(puts out “hello world”)

Goo Goals

• Simple
• Productive
• Powerful
• Extensible
• Dynamic
• Efficient
• Real-time

• Teaching and research
vehicle

• Electronic music is
domain to keep it
honest

Simplicity

• 10K lines 10 page manual
• Hard limit – pressure makes pearls

Best of All Worlds

• Want scripting and delivery language rolled
into one

• Tools work better
• No artificial boundaries and cliffs
• Never been done effectively

• Electronic music forces realism

Goo Ancestors

• Language Design is Difficult
– Leverage proven ideas
– Make progress in selective directions

• Ancestors
– Scheme
– Cecil
– Dylan

Goo <=> Scheme

• Concise naming
• Procedural macros
• Objects all the way

• Long-winded naming
• Rewrite rule only
• Only records

Goo <=> Cecil

• Prefix syntax
• Scheme inspired

special forms

• Infix syntax
• Smalltalk inspired

special forms

Goo <=> Dylan

• Prefix syntax
• Procedural macros
• Rationalized collection

protocol / hierarchy
• Always open
• Predicate types

• Infix syntax
• Rewrite-rule only …
• Conflated collection

protocol / hierarchy
• Sealing
• Fixed set of types

Object Orientation

• Assume you know OO basics
• Motivations:

– Abstraction
– Reuse
– Extensibility

Goo: OO & MM
(dc <point> (<any>))
(dp point-x (<point> => <int>) 0)
(dp point-y (<point> => <int>) 0)

(dv p1 (new <point>))

(dm + (p1|<point> p2|<point> => <point>)
(new <point>

point-x (+ (point-x p1) (point-x p2))
point-y (+ (point-y p1) (point-y p2)))

Language Design:
User Goals -- The “ilities”

• Learnability
• Understandability
• Writability
• Modifiability
• Runnability
• Interoperability

Learnability

• Simple
• Small
• Regular
• Gentle learning curve

• Perlis: “Symmetry is a complexity reducing
concept…; seek it everywhere.”

Goo: Learnability

• Simple and Small:
– 18 special forms: if, seq, set, fun, def, let, loc,

esc, fin, dv, dm, dg, new, dc, dp, ds, ct, quote

– 7 macros: try, rep, mif, and, or, cond, case
• Gentle Learning Curve:

– Graceful transition from functional to object-oriented
programming

– Perlis: “Purely applicative languages are poorly
applicable.”

Goo: Special Forms
IF (IF ,test ,then ,else)
SEQ (SEQ ,@forms)
SET (SET ,name ,form) | (SET (,name ,@args) ,form)
DEF (DEF ,var ,init)
FUN (FUN ,sig ,@body)
LOC (LOC ((,name ,sig ,@body) …) .@body)
ESC (ESC ,name ,@body)
FIN (FIN ,protected-form ,@cleanup-forms)
DV (DV ,var ,form)
DM (DM ,name ,sig ,@body)
DG (DG ,name ,sig)
DC (DC ,name (,@parents))
DP (DP ,getter (,class => ,type) [,init])
NEW (NEW (,@parents) ,@prop-inits)

sig (,@vars) | (,@vars => ,var)
var ,name | (,name ,type)
prop-init ,name ,value

Understandability

• Natural notation
• Simple to predict behavior
• Modular
• Models application domain
• Concise

Goo: Understandability

• Describable by a small interpreter
– Size of interpreter is a measure of complexity

of language

• Regular syntax
– Debatable whether prefix is natural, but it’s

simple, regular and easy to implement

Writability

• Expressive features and abstraction
mechanisms

• Concise notation
• Domain-specific features and support
• No error-prone features
• Internal correctness checks (e.g.,

typechecking) to avoid errors

Goo: Error Proneness

• No out of language errors
– At worst all errors will be be caught in

language at runtime
– At best potential errors such as “no applicable

methods” will be caught statically earlier and in
batch

• Unbiased dispatching and inheritance
– Example: Method selection not based on

lexicographical order as in CLOS

Design Principle Two:
Planned Serendipity

• Serendipity:
– M-W: the faculty or phenomenon of finding

valuable or agreeable things not sought for

• Orthogonality
– Collection of few independent powerful

features combinable without restriction

• Consistency

Goo: Serendipity

• Objects all the way down
• Slots accessed only through calls to

generic’s
• Simple orthogonal special forms
• Expression oriented
• Example:

– Exception handling can be built out of a few
special forms: esc, fin, loc, …

Modifiability

• Minimal redundancy
• Hooks for extensibility included

automatically
• Users equal partner in language design
• No features that make it hard to change

code later

Goo: Extensible Syntax

• Syntactic Abstraction
• Procedural macros
• WSYWIG

– Pattern matching
– Code generation

• Example:
(ds (unless ,test ,@body)
`(if (not ,test) (seq ,@body)))

Goo: Multimethods

• Can add methods outside original class
definition:
– (dm jb-print (x|<node>) …)
– (dm jb-print (x|<str>) …)

Goo: Generic Accessors

• All slot access goes through generic
function calls

• Can easily redefine these generic’s without
affecting client code

Runnability

• Features for programmers to control
efficiency

• Analyzable by compilers and other tools

Goo: Optional Types

• All bindings and parameters can take
optional types

• Rapid prototype without types
• Add types for documentation and efficiency

• Example:
(dm format (s msg args|…) …)
(dm format (s|<stream> msg|<str> args|…) …)

Goo: Pay as You Go

• Don’t charge for features not used
• Pay more for features used in more complicated

ways
• Examples:

– Dispatch
• Just function call if method unambiguous from argument types
• Otherwise require dynamic method lookup

– Goo’s bind-exit called “esc”
• Local exits are set + goto
• Non local exits must create a frame and stack alloc an exit

closure

The Rub

• Support for evolutionary programming
creates a serious challenge for implementers

• Straightforward implementations would
exact a tremendous performance penalty

Implementation Strategy

• Simple dynamic compilation
• Maintains both

– optimization and
– interactivity

Initial Loose Compilation

• Very quick compilation
• Generate minimal dependencies

– only names and macros

Dynamic Whole Program
Compilation

• Assume complete information
• Perform aggressive type flow analysis

– Chooses, clones and inlines methods

• Compilation can be triggered manually,
through dependencies, or through feedback

Dependency Tracking

• Assumptions are tracked
• Changed assumptions trigger recompilation
• Based on Fun-O-Dylan approach

– Dependencies logged on bindings
– Record dependent and compilation stage

Simple Code Generator

• Focus is on high-level optimizations
• Potentially gen-code direct from AST with

approximated peep-hole optimizations

Save Image

• Save executable copy of image to disk
– Maintains optimizations and dependencies
– Uses dump/undump approach of emacs

• Avoid hassles of
– File formats
– Databases
– etc

Status

• Fully bootstrapped
• Module system
• Dynamic C-based code-gen
• Dependency tracking
• Flow-typist by summer’s end

Research Directions

• Language Design

• Dynamic
parameterized types

• Dynamic Interfaces
• Series
• Macros

• Language
Implementation

• Dynamic compilation
• Analysis/optimizations
• Visualization
• Real-time

